15 research outputs found

    A seismic risk for the lunar base

    Get PDF
    Shallow moonquakes, which were discovered during observations following the Apollo lunar landing missions, may pose a threat to lunar surface operations. The nature of these moonquakes is similar to that of intraplate earthquakes, which include infrequent but destructive events. Therefore, there is a need for detailed study to assess the possible seismic risk before establishing a lunar base

    New Morphometric Measurements of Peak-Ring Basins on Mercury and the Moon: Results from the Mercury Laser Altimeter and Lunar Orbiter Laser Altimeter

    Get PDF
    Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins

    Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Get PDF
    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science

    Mars: new insights and unresolved questions

    Get PDF
    Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include: – high escape rates of early Mars’ atmosphere, including loss of water, impact present-day habitability; – putative fossils on Mars will likely be ambiguous biomarkers for life; – microbial contamination resulting from human habitation is unavoidable; and – based on Mars’ current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.Some of the outstanding questions are:– which interpretation of the hemispheric dichotomy of the planet is correct; – to what degree did deep-penetrating faults transport subsurface liquids to Mars’ surface; – in what abundance are carbonates formed by atmospheric processes; – what properties of martian meteorites could be used to constrain their source locations; – the origin(s) of organic macromolecules; – was/is Mars inhabited; – how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth; – how can we ensure that humans and microbes form a stable and benign biosphere; and – should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?Studies of Mars’ evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space

    Working models for the gravitational field of Phobos

    No full text
    Models for the gravitational field of Mars moon Phobos were developed using the latest shape model and assuming homogeneous density distribution. Three methods were applied in our study. Comparisons were made between these methods and all were shown to yield consistent results. Notably, the most accurate shape model of Phobos to date, complete up to degree and order 17 was used for the first time in our analysis. A set of spherical harmonic coefficients up to degree and order 17 were derived for the gravitational field of Phobos. Also considered was the gravitational field on the surface of Phobos. Typical characteristics as well as some pronounced surface features of this irregular-shaped small body could be conveniently identified. The results are readily applicable for such purposes as spacecraft orbit analysis and assessing the dynamical environment of Phobos

    The Nucleus Of Comet Borrelly: A Study Of Morphology And Surface Brightness

    No full text
    Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly\u27s surface are very minor (\u3c10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly\u27s large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly\u27s main jets. Borrelly\u27s surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. © 2003 Elsevier Inc. All rights reserved
    corecore